

Toxics Modeling in Baltimore Harbor

Technical Outreach

Prepared by

Miao-Li Chang, Ph.D.

MDE/TARSA

Prepared for the

Baltimore Harbor Stakeholder Advisory Group

May 7, 2002

Baltimore Harbor Toxic TMDLs

- The Harbor TMDL is based on impairments reported on the 1996 and 1998 303(d) lists.
- The TMDLs will determine the limits on loads of polluting substances that will allow the water to meet the water quality standards.
- These limits will be reflected in municipal and industrial permits and in the application of non-point source controls.
- A series of models will determine loads coming off the land (watershed model) and how the pollutants are diluted or lost and relate to water quality (water quality model which has several parts).

Water Quality Impairments in Baltimore Harbor

- Toxic contamination in sediment
 - Chlordane and PCBs
 - Toxic metals (Chromium, lead, zinc)
- Fish consumption advisories
 - Bottom feeding fish (catfish, carp, eels)
 contain unacceptable levels of chlordane
- Eutrophication- excess nutrients; low dissolved oxygen
 - Nutrients: Nitrogen and Phosphorus
- Fecal coliform

Toxic Data Sources and Assessment

- Baltimore Harbor Sediment Mapping Study
 - Chemistry (Metals, PCBs, PAHs) 80 Stations
 - Toxicity Study 25 Stations
 - Benthic Community 40 stations
- Sediment Fluxes Baltimore City
- NPDES data for point sources and Baltimore City nonpoint sources
- Whole Effluent Toxicity (WET) program data
- Fish Tissue
- CHARM Comprehensive Harbor Assessment and Regional Model Study (1996-2000)
- PBGM Patapsco/Back/Gunpowder/Middle River Chemical Contaminant Survey (2001-2002)

Harbor Toxics Modeling Program

- Estimate Nonpoint Source Loads -
 - Model the watershed estimate loads from the land to the water
 - Provide inputs to the Harbor Models
 - Uses a Storm Water Management Model (SWMM)
- Simulate Fates of Toxics in Baltimore Harbor Harbor Models
 - Management/Screen (Box Model) UMCES
 - Hydrodynamics (water transport) and Sediment Transport
 - Toxic (Dissolved/Particulate)
 - Food Web
 - Detailed Assessment (Upper Bay Model) VIMS
 - Models entire upper Bay to include exchange between the Harbor and the Bay
 - Hydrodynamics (water transport) and Sediment Transport
 - Toxic (Dissolve/Particulate)

Harbor Toxics Modeling Framework

Harbor Toxic Watershed Modeling

Estimate Nonpoint Source Loads

Toxics – Watershed Model

Storm Water Management Model (SWMM)

- Nearly Completed : Chromium, lead, zinc
 - Internal/External Review Completed
- UNDER DEVELOPMENT : PCB
- Primarily Urban Runoff Model (wet weather flow)
- Recent EPA Updates by Urban Watershed Management Branch
- Multiple Buildup/Washoff Functions

SWMM – Model Calibration for Metals

Focus on landuses which are predominantly industrial, commercial and residential (54%).

For–Forest CL-Crop Land

Bar-Barren Pas-Pasture

CI, HDR, MDR, LDR-Industrial, Commercial and Residential

Open-open land Water-water

Landuse

	TSS	Cr	Cu	Zn	Pb	
Landuse	(tons/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	
CI	26%	65%	25%	50%	43%	
HDR	13%	8%	23%	14%	16%	
MDR	20%	15%	32%	20%	20%	
LDR	8%	7%	6%	8%	6%	
Sum Urban	66%	94%	86%	92%	86%	
OTHER	34%	6%	14%	8%	14%	

Baltimore Harbor Toxics Watershed for Total Metals - Summary

- Baltimore Harbor PS
- Baltimore Harbor NPS

Harbor Toxic Modeling

Simulate Fates of Toxics in Baltimore Harbor

Harbor Toxic Modeling Framework UMCES – Box Model

- A useful screening tool to quickly test the relative consequences of different loading scenarios under a variety of forcing conditions.
- Boundary condition: Horizontally uniform Harbor boundary conditions for temperature, salinity and suspended sediments derived from observed data.
- Model Status
 - Hydrodynamic/Sediment Transport Linking Nonpoint Source and Point Source Loads
 - Toxic Box/Foodweb Final Stage

Harbor Toxic Modeling Framework UMCES – Hydrodynamic/Sediment

- Data: Time varying sea level at the Harbor mouth and time-varying winds to predict the temporal evolution of currents, sea-surface elevation, and water properties within the Harbor for 4 observed months.
 - May 1995
 - October/November 1999 CHARM 1
 - March/April 2000 CHARM 2
 - July/August 2000 CHARM 3
- Grid size :
 - Horizontal 360m * 360m
 - Vertical 6 layers (Sigma Coordinate)

Harbor Toxic Modeling Framework UMCES – Toxic Box Model

- Spatially-explicit 24-box model
- Assumes the water column is a completely well mixed system.
- Simulates the spatial distribution and transformations of HOCs, Organic Carbon, Metals and biomass within the Baltimore Harbor.
- Run Time : Hours

Harbor Toxic Modeling Framework VIMS – Upper Bay Model

- A real time simulation
 - Covers entire Upper Chesapeake Bay Hydrology with more refined boundary conditions for Baltimore Harbor
 - One-to-one linkage between hydrodynamic and toxic components.

Model Status

- Hydrodynamic/Sediment Transport Final Stage
 - 1995, 1996 Calibration completed
 - Working on year 2000 and 2001
- ToxiWasp (simulating fate of toxic) In Progress

Harbor Toxic Modeling Framework VIMS – Hydrodynamic/Sediment transport

- Open Boundary Conditions
 - The long-term tidal data from Solomon Island at Patuxent River
 - Salinity and temperature at CB4.4
- River Boundary Conditions
 - Susquehanna River
 - C & D canal
 - Chester River
 - Choptank River
- The grid resolution
 - 0.5 km longitudinally
 - 0.25 km laterally
- The preliminary results show that the model is capable of reproducing turbidity maximum and simulating major temporal and spatial features.

MDE

Harbor Toxic Modeling Framework VIMS –Hydrodynamic/Sediment Model Calibration stations

August 2002

- Complete CHARM point source sampling finalize data report
- Finalize watershed model report
- Continue working on calibrating hydrodynamic and toxic components
- Work with Stakeholders

December 2002

- Finalize hydrodynamic calibration
- Preliminary Toxic Model calibration
- Sensitivity test of Nonpoint source/Point source load reduction using UMCES Box Model.
- Work with Stakeholders

Technical Outreach

Prepared by

Miao-Li Chang, Ph.D.

MDE/TARSA

Prepared for the

Baltimore Harbor Stakeholder Advisory Group

May 7, 2002

Water Quality Impairments in Baltimore Harbor

- Toxic contamination in sediment
 - Chlordane and PCBs
 - Toxic metals (Chromium, lead, zinc)
- Fish consumption advisories
 - Bottom feeding fish (Catfish, carp, eels) contain unacceptable levels of chlordane
- Eutrophication Excess Nutrients; Low Dissolved Oxygen
 - Nutrients; Nitrogen and Phosphorus
- Fecal coliform

Existing Data for Nutrients

- NPDES discharge permits
- Water column
 - MDE 94-95 sampling
 - Baltimore City Department of Public Works 96-97
- Benthic flux rate of movement of nutrients from sediment to water
 - Upper Bay
 - Chesapeake Bay Program 82~
 - University of Maryland 94, 95, 97

Harbor Eutrophication Modeling Program

- Estimate Nonpoint Source Loads Watershed Modeling
 - Hydrologic Simulation Program: Fortran (HSPF)
- Simulate Water Quality in Baltimore Harbor Harbor Modeling
 - A 3-D **Hydrodynamic** Model Curvilinear Hydrodynamic
 3-Dimension (CH3D)
 - A 3-D Comprehensive Water Quality Model CE-QUAL-ICM
 - A Sediment Diagenesis Model

Harbor Eutrophication Modeling Framework

Harbor Eutrophication Watershed Modeling

Estimate Nonpoint Source Loads

Eutrophication – Watershed Model

HSPF – Hydrologic Simulation Program: Fortran

- •HSPF is used to estimate nutrient, flow, and TSS loading
- •The model incorporates;
 - Seasonality
 - Meteorological Data
 - Landuse
 - Agriculture Information
 - Soil types
 - Monitoring Data

HSPF – Model Calibration

- Focus on predominant land uses
- Calibrate EOS loads to literature values
- Calibrate urban loads to Event Mean Concentrations (EMCs)
- ▲ Time series overlay

Water Quality Calibration Stations

HSPF Landuse Loading Summary

Loading Rates (lbs/ac/yr)													
	Area	Sediment			TN			TP					
		min	avg	max	min	avg	max	min	avg	max			
Urban	175,977	19	157	394	5.31	6.62	7.71	0.55	0.68	0.89			
MDE(93-97)			134			6.90			0.53				
CBP(93-97)			382			13.81			2.14				
Forest	83,521	48	110	333	0.86	1.91	3.40	0.09	0.12	0.20			
MDE(93-97)			131			2.64			0.22				
CBP(93-97)	Bonnesson Location and Control of the Control of th		685	0000000 E 0000000000000000000000000000		2.50	0000000000 E00000000000000000000000000	200 \$ 1000000000000000000000000000000000	0.14	and the second s			
Crop	30,765	148	234	366	6.59	6.69	6.80	0.21	0.59	0.82			
MDE(93-97)			366			15.03			0.48				
CBP(93-97)			2,383	按照线的 的复数形式 经股份股份 经股份股份 经股份股份 经股份股份	建 酸苯甲酰胺 经股份股份 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	21.21		整建加 收益 经收益 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	1.42				
Pasture	11,382	148	277	491	3.74	5.34	6.80	0.12	0.39	0.66			
MDE(93-97)			223			8.01			0.19				
CBP(93-97)	the state of the s		1,087			11.84			1.91				
Red : Litera	ture values												

Harbor Eutophication Modeling

Simulate Water Quality in Baltimore Harbor

Harbor Eutrophication Modeling Hydrodynamic Model

 CH3D for Upper Chesapeake Bay -Same Hydrodynamic model as for the toxic Upper Bay Model, but without intratidal sediment transport model

Calibration - Final Stage

Harbor Eutrophication Modeling CH3D Model Calibration stations

Current Eutrophication Model Status

 Watershed (HSPF) – Calibration Final (Internal/External Review Completed)

 Hydrodynamic Model – Calibration Final (Internal Review completed)

Water Quality Model – In Progress

August 2002

- Finalize Watershed and Hydrodynamic Models
- Preliminary Water Quality Model Calibration
- Sensitivity Test of Nonpoint Source/Point Source Load Reduction
- Work with Stakeholders

December 2002

- Finalize Water Quality Model Calibration
- Preliminary Scenario strategy
- Work with Stakeholders